### $^{181}$ Ta( $^{18}$ O, $^{18}$ N $\gamma$ ) **2020Zi03**

Type Author Citation Literature Cutoff Date
Full Evaluation R. Spitzer, J. H. Kelley ENSDF 30-Jun-2021

2020Zi03: XUNDL dataset compiled at TUNL (2020).

The authors investigated the level structure of  $^{18}N$  and measured the lifetime of the  $E_x$ =2404 keV state in  $^{18}N$  via DSAM techniques.

A beam of 126 MeV  $^{18}$ O ions from the GANIL cyclotrons impinged on a 6.64 mg/cm $^2$   $^{181}$ Ta target. The  $^{18}$ N ions that scattered at  $\theta$ =45° ( $\pm$ 6°) were momentum analyzed using the VAMOS++ ion tracking system. A collection of  $\gamma$ -ray detectors from the AGATA and PARIS arrays plus two large-volume LaBr $_3$  detectors provided a high granularity for  $\gamma$ -ray energy and angle measurement. The  $\gamma$ -ray detectors were aligned along the VAMOS++ axis at  $\theta_{\rm rel.}$ =115°-175° (AGATA) and  $\theta_{\rm rel.}$ =90°(PARIS+LaBr $_3$ ). The  $\gamma$  rays detected in coincidence with  $^{18}$ N ions in the VAMOS++ spectrometer were analyzed.

The authors developed a Monte Carlo analysis of the Doppler shift attenuation spectrum that accounts for population (and subsequent deexcitation) of levels via low-momentum transfer and deep-inelastic reaction processes. The accuracy of the method relies on the precise angle determination between the scattered projectile and the Doppler-shifted  $\gamma$  ray.

2020Zi01: Extension of analysis presented in (2020Zi03) except the  $\gamma$ -ray spectrum is shown over a broader range. Additional unplace transitions are discussed corresponding to  $E_{\gamma}$ =1720, 2073, 2301 keV.

See analysis of the <sup>18</sup>O+<sup>181</sup>Ta fragmentation process in (2010Mi08).

## <sup>18</sup>N Levels

| E(level) <sup>†</sup> | $J^{\pi}$ | T <sub>1/2</sub> | Comments                                                                                                  |
|-----------------------|-----------|------------------|-----------------------------------------------------------------------------------------------------------|
| 0.0                   | 1-        |                  |                                                                                                           |
| 114.6                 | $(2^{-})$ |                  |                                                                                                           |
| 587.3                 | $(2^{-})$ |                  |                                                                                                           |
| 741.6                 | $(3^{-})$ |                  |                                                                                                           |
| 2404.6                |           | 0.11 ps +51-7    | $T_{1/2}$ : From $\tau$ =0.16 <sup>+74</sup> <sub>-10</sub> ps and $E_{\gamma}$ =1663.0 keV 8 (2020Zi03). |

<sup>&</sup>lt;sup>†</sup> From (2020Zi03) Figure 5.

#### $\gamma(^{18}N)$

| $E_{\gamma}^{\dagger}$           | $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $E_f$ $J_f^{\pi}$ | Comments                                                                                               |
|----------------------------------|--------------|----------------------|-------------------|--------------------------------------------------------------------------------------------------------|
| 114.6 <i>I</i>                   | 114.6        | $(2^{-})$            | 0.0 1             |                                                                                                        |
| 154.6 <i>3</i>                   | 741.6        | $(3^{-})$            | 587.3 (2-)        |                                                                                                        |
| 472.7 2                          | 587.3        | $(2^{-})$            | 114.6 (2-)        | $E_{\gamma}$ : From <sup>18</sup> C $\beta^-$ (1991Pr03).                                              |
| 627 <i>1</i>                     | 741.6        | $(3^{-})$            | 114.6 (2-)        | E <sub><math>\gamma</math></sub> : From ${}^{9}\text{Be}({}^{11}\text{B},2\text{p}\gamma)$ (2008Wi05). |
| <sup>x</sup> 1566 <sup>‡</sup> 1 |              |                      |                   |                                                                                                        |
| 1663.0 8                         | 2404.6       |                      | 741.6 (3-)        | $E_{\gamma}$ : From (2020Zi03); see also 1662.3 keV 3 in (2020Zi01).                                   |
| <sup>x</sup> 1720 <sup>‡</sup>   |              |                      |                   |                                                                                                        |
| <sup>x</sup> 2073.4 8            |              |                      |                   |                                                                                                        |
| x2300.9 8                        |              |                      |                   |                                                                                                        |

<sup>†</sup> From (2020Zi03) except where indicated.

<sup>&</sup>lt;sup>‡</sup> Placement of transition in the level scheme is uncertain.

 $<sup>^{</sup>x}$   $\gamma$  ray not placed in level scheme.

# $^{181}$ Ta( $^{18}$ O, $^{18}$ N $\gamma$ ) 2020Zi03

## Level Scheme

